second max numpy

相關問題 & 資訊整理

second max numpy

In [1]: import numpy as np In [2]: arr = np.array([1, 3, 2, 4, 5]) In [3]: .... def largest_indices(ary, n): """Returns the n largest indices from a numpy array. , You can use np.argsort(np.max(x, axis=0))[-2] . This scales to any index you want by changing the slicing index from -2 to -index .,Return the maximum of an array or maximum along an axis. ... ignoring any NaNs. maximum: Element-wise maximum of two arrays, propagating any NaNs. fmax ... ,When a is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all ... ,When a is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all ... ,numpy. maximum (x1, x2, /, out=None, *, where=True, casting='same_kind', ... Compare two arrays and returns a new array containing the element-wise maxima ... ,numpy. maximum (x1, x2, /, out=None, *, where=True, casting='same_kind', ... Compare two arrays and returns a new array containing the element-wise maxima ... , First to find the element you are looking for, you can use the argsort function to get a sorted list of indexes for the values of each vector on the ..., You can flatten the matrix and then sort it: >>> k = np.array([[ 35, 48, 63], ... [ 60, 77, 96], ... [ 91, 112, 135]]) >>> flat=k.flatten() >>> flat.sort() > ..., import numpy as np a=np.array([[1,2,3],[4,5,6]]) a=a.reshape((a.shape[0])*(a.shape[1])) # n is the nth largest taken by us print(a[np.argsort()[-n]]).

相關軟體 Python 資訊

Python
Python(以流行電視劇“Monty Python 的飛行馬戲團”命名)是一種年輕而且廣泛使用的面向對象編程語言,它是在 20 世紀 90 年代初期開發的,在 2000 年代得到了很大的普及,現代 Web 2.0 的運動帶來了許多靈活的在線服務的開發,這些服務都是用這種偉大的語言提供的這是非常容易學習,但功能非常強大,可用於創建緊湊,但強大的應用程序.8997423 選擇版本:Python 3.... Python 軟體介紹

second max numpy 相關參考資料
How do I get indices of N maximum values in a NumPy array? - Stack ...

In [1]: import numpy as np In [2]: arr = np.array([1, 3, 2, 4, 5]) In [3]: .... def largest_indices(ary, n): """Returns the n largest indices from a numpy array.

https://stackoverflow.com

Numpy get index of row with second-largest value - Stack Overflow

You can use np.argsort(np.max(x, axis=0))[-2] . This scales to any index you want by changing the slicing index from -2 to -index .

https://stackoverflow.com

numpy.amax — NumPy v1.16 Manual

Return the maximum of an array or maximum along an axis. ... ignoring any NaNs. maximum: Element-wise maximum of two arrays, propagating any NaNs. fmax ...

https://docs.scipy.org

numpy.argsort — NumPy v1.13 Manual

When a is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all ...

https://docs.scipy.org

numpy.argsort — NumPy v1.16 Manual

When a is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all ...

https://docs.scipy.org

numpy.maximum — NumPy v1.13 Manual

numpy. maximum (x1, x2, /, out=None, *, where=True, casting='same_kind', ... Compare two arrays and returns a new array containing the element-wise maxima ...

https://docs.scipy.org

numpy.maximum — NumPy v1.14 Manual

numpy. maximum (x1, x2, /, out=None, *, where=True, casting='same_kind', ... Compare two arrays and returns a new array containing the element-wise maxima ...

https://docs.scipy.org

Python, Numpy, replacing second max value with 1, others with 0 ...

First to find the element you are looking for, you can use the argsort function to get a sorted list of indexes for the values of each vector on the ...

https://stackoverflow.com

Quickest way to find the nth largest value in a numpy Matrix - Stack ...

You can flatten the matrix and then sort it: >>> k = np.array([[ 35, 48, 63], ... [ 60, 77, 96], ... [ 91, 112, 135]]) >>> flat=k.flatten() >>> flat.sort() > ...

https://stackoverflow.com

Quickest way to find the nth largest value in a numpy Matrix ...

import numpy as np a=np.array([[1,2,3],[4,5,6]]) a=a.reshape((a.shape[0])*(a.shape[1])) # n is the nth largest taken by us print(a[np.argsort()[-n]]).

https://stackoverflow.com