sklearn models
This documentation is for scikit-learn version 0.16.1 — Other versions. If you use ... 1.1.15. Polynomial regression: extending linear models with basis functions. ,1. Supervised learning. 1.1. 1.1.3.1.3. Comparison with the regularization parameter of SVM. 1.1.4. 1.2. Linear and Quadratic Discriminant Analysis. 1.2.1. 1.3. Kernel ridge regression. 1.4. Support Vector Machines. 1.4.1. 1.5. Stochastic Gradient Descent,However, coefficient estimates for Ordinary Least Squares rely on the independence of the model terms. When terms are correlated and the columns of the ... ,Cross-validation: evaluating estimator performance · 3.1.1. Computing cross-validated metrics · 3.1.1.1. The cross_validate function and multiple metric ... ,Machine learning: the problem setting; Loading an example dataset; Learning and predicting; Model persistence; Conventions. Type casting; Refitting and ... ,Choosing the right estimator¶. Often the hardest part of solving a machine learning problem can be finding the right estimator for the job. Different estimators are ... ,A comparison of a several classifiers in scikit-learn on synthetic datasets. The point of this example is to illustrate the nature of decision boundaries of different ... ,scikit-learn ... Comparing, validating and choosing parameters and models. ... December 2018. scikit-learn 0.20.2 is available for download (Changelog) ... , sklearn 的model 属性和功能都是高度统一的. 你可以运用到这些属性查看model 的参数和值等等.
相關軟體 Weka (32-bit) 資訊 | |
---|---|
Weka(懷卡托知識分析環境)是用 Java 編寫的一套流行的機器學習軟件。 Weka 是用於數據挖掘任務的機器學習算法的集合。算法可以直接應用於數據集,也可以從您自己的 Java 代碼中調用。 Weka 包含數據預處理,分類,回歸,聚類,關聯規則和可視化的工具。它也非常適合開發新的機器學習方案。 Weka 是根據 GNU 通用公共許可證頒發的開源軟件。 注意:需要 Java 運行時環境. 也可以... Weka (32-bit) 軟體介紹
sklearn models 相關參考資料
1. Supervised learning — scikit-learn 0.16.1 documentation
This documentation is for scikit-learn version 0.16.1 — Other versions. If you use ... 1.1.15. Polynomial regression: extending linear models with basis functions. http://scikit-learn.org 1. Supervised learning — scikit-learn 0.20.3 documentation
1. Supervised learning. 1.1. 1.1.3.1.3. Comparison with the regularization parameter of SVM. 1.1.4. 1.2. Linear and Quadratic Discriminant Analysis. 1.2.1. 1.3. Kernel ridge regression. 1.4. Support V... http://scikit-learn.org 1.1. Generalized Linear Models — scikit-learn 0.20.3 documentation
However, coefficient estimates for Ordinary Least Squares rely on the independence of the model terms. When terms are correlated and the columns of the ... http://scikit-learn.org 3. Model selection and evaluation — scikit-learn 0.20.3 documentation
Cross-validation: evaluating estimator performance · 3.1.1. Computing cross-validated metrics · 3.1.1.1. The cross_validate function and multiple metric ... http://scikit-learn.org An introduction to machine learning with scikit-learn — scikit-learn ...
Machine learning: the problem setting; Loading an example dataset; Learning and predicting; Model persistence; Conventions. Type casting; Refitting and ... http://scikit-learn.org Choosing the right estimator — scikit-learn 0.20.3 documentation
Choosing the right estimator¶. Often the hardest part of solving a machine learning problem can be finding the right estimator for the job. Different estimators are ... http://scikit-learn.org Classifier comparison — scikit-learn 0.20.3 documentation
A comparison of a several classifiers in scikit-learn on synthetic datasets. The point of this example is to illustrate the nature of decision boundaries of different ... http://scikit-learn.org scikit-learn: machine learning in Python — scikit-learn 0.20.3 ...
scikit-learn ... Comparing, validating and choosing parameters and models. ... December 2018. scikit-learn 0.20.2 is available for download (Changelog) ... https://scikit-learn.org sklearn 常用属性与功能- Sklearn | 莫烦Python
sklearn 的model 属性和功能都是高度统一的. 你可以运用到这些属性查看model 的参数和值等等. https://morvanzhou.github.io |