numpy min

相關問題 & 資訊整理

numpy min

If this is a tuple of ints, the minimum is selected over multiple axes, instead of a single axis or all the axes as before. out : ndarray, optional. Alternative output array in which to place the result. Must be of the same shape and buffer length as the ,Element-wise minimum of array elements. Compare two arrays and returns a new array containing the element-wise minima. If one of the elements being compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned. The,numpy. minimum (x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'minimum'>¶. Element-wise minimum of array elements. Compare two arrays and returns a n,numpy.ndarray.min¶. ndarray.min(axis=None, out=None, keepdims=False)¶. Return the minimum along a given axis. Refer to numpy.amin for full documentation. See also. numpy.amin: equivalent function ... ,numpy.ndarray.min¶. ndarray.min(axis=None, out=None, keepdims=False)¶. Return the minimum along a given axis. Refer to numpy.amin for full documentation. See also. numpy.amin: equivalent function ... ,numpy.ndarray.min¶. ndarray.min(axis=None, out=None, keepdims=False)¶. Return the minimum along a given axis. Refer to numpy.amin for full documentation. See also. numpy.amin: equivalent function ... ,numpy.ndarray.min¶. ndarray. min (axis=None, out=None, keepdims=False)¶. Return the minimum along a given axis. Refer to numpy.amin for full documentation. See also. numpy.amin: equivalent function ... ,import numpy as np a = np.array([[1,5,3],[4,2,6]]) print(a.min()) #无参,所有中的最小值print(a.min(0)) # axis=0; 每列的最小值print(a.min(1)) # axis=1;每行的最小值结果: 1 [1 2 3] [1 2]

相關軟體 Python 資訊

Python
Python(以流行電視劇“Monty Python 的飛行馬戲團”命名)是一種年輕而且廣泛使用的面向對象編程語言,它是在 20 世紀 90 年代初期開發的,在 2000 年代得到了很大的普及,現代 Web 2.0 的運動帶來了許多靈活的在線服務的開發,這些服務都是用這種偉大的語言提供的這是非常容易學習,但功能非常強大,可用於創建緊湊,但強大的應用程序.8997423 選擇版本:Python 3.... Python 軟體介紹

numpy min 相關參考資料
numpy.amin — NumPy v1.14 Manual - Numpy and Scipy Documentation

If this is a tuple of ints, the minimum is selected over multiple axes, instead of a single axis or all the axes as before. out : ndarray, optional. Alternative output array in which to place the resu...

https://docs.scipy.org

numpy.minimum — NumPy v1.12 Manual

Element-wise minimum of array elements. Compare two arrays and returns a new array containing the element-wise minima. If one of the elements being compared is a NaN, then that element is returned. If...

https://docs.scipy.org

numpy.minimum — NumPy v1.14 Manual

numpy. minimum (x1, x2, /, out=None, *, where=True, casting=&#39;same_kind&#39;, order=&#39;K&#39;, dtype=None, subok=True[, signature, extobj]) = &lt;ufunc &#39;minimum&#39;&gt;¶. Element-wise minimu...

https://docs.scipy.org

numpy.ndarray.min — NumPy v1.10 Manual

numpy.ndarray.min¶. ndarray.min(axis=None, out=None, keepdims=False)¶. Return the minimum along a given axis. Refer to numpy.amin for full documentation. See also. numpy.amin: equivalent function&nbsp...

https://docs.scipy.org

numpy.ndarray.min — NumPy v1.11 Manual

numpy.ndarray.min¶. ndarray.min(axis=None, out=None, keepdims=False)¶. Return the minimum along a given axis. Refer to numpy.amin for full documentation. See also. numpy.amin: equivalent function&nbsp...

https://docs.scipy.org

numpy.ndarray.min — NumPy v1.12 Manual

numpy.ndarray.min¶. ndarray.min(axis=None, out=None, keepdims=False)¶. Return the minimum along a given axis. Refer to numpy.amin for full documentation. See also. numpy.amin: equivalent function&nbsp...

https://docs.scipy.org

numpy.ndarray.min — NumPy v1.14 Manual - Numpy and Scipy ...

numpy.ndarray.min¶. ndarray. min (axis=None, out=None, keepdims=False)¶. Return the minimum along a given axis. Refer to numpy.amin for full documentation. See also. numpy.amin: equivalent function&nb...

https://docs.scipy.org

python numpy中数组.min() - CSDN博客

import numpy as np a = np.array([[1,5,3],[4,2,6]]) print(a.min()) #无参,所有中的最小值print(a.min(0)) # axis=0; 每列的最小值print(a.min(1)) # axis=1;每行的最小值结果: 1 [1 2 3] [1 2]

https://blog.csdn.net