numpy logical_and reduce
,numpy. logical_and (x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'logical_and'>¶. ,numpy. logical_and (x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'logical_and'>¶. ,Parameters: x1, x2 : array_like. Input arrays. x1 and x2 must be of the same shape. out : ndarray, None, or tuple of ndarray and None, optional. A location into ... ,the result of iterating j over range(N_i) , cumulatively applying ufunc to each a[k_0, ..,k_i-1}, j, . For a one-dimensional array, reduce produces results equivalent ... ,numpy.ufunc.reduce. Reduces a's dimension by one, by applying ufunc along one axis. For example, add.reduce() is equivalent to sum(). Axis or axes along which a reduction is performed. ,Then ufunc.reduce(a, axis=i)[k_0, ..,k_i-1}, k_i+1}, .., k_M-1}] = the result of iterating j over range(N_i), cumulatively applying ufunc to each a[k_0, ..,k_i-1}, j, ... ,numpy.ufunc.reduce. Reduces a's dimension by one, by applying ufunc along one axis. For example, add.reduce() is equivalent to sum(). Axis or axes along which a reduction is performed. , X = np.asarray([[1.0, 0.0, 3.0, 8.0], [2.0, 0.0, 1.0, 1.0], [1.5, 2.5, 1.0, 0.0]]) n = 4 M = np.logical_and.reduce(np.mod(X, 1) == 0, axis=-1) print(M) M ...
相關軟體 Python 資訊 | |
---|---|
Python(以流行電視劇“Monty Python 的飛行馬戲團”命名)是一種年輕而且廣泛使用的面向對象編程語言,它是在 20 世紀 90 年代初期開發的,在 2000 年代得到了很大的普及,現代 Web 2.0 的運動帶來了許多靈活的在線服務的開發,這些服務都是用這種偉大的語言提供的這是非常容易學習,但功能非常強大,可用於創建緊湊,但強大的應用程序.8997423 選擇版本:Python 3.... Python 軟體介紹
numpy logical_and reduce 相關參考資料
Numpy `logical_or` for more than two arguments - Stack Overflow
https://stackoverflow.com numpy.logical_and — NumPy v1.13 Manual
numpy. logical_and (x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'logical_and'>¶. https://docs.scipy.org numpy.logical_and — NumPy v1.14 Manual
numpy. logical_and (x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'logical_and'>¶. https://docs.scipy.org numpy.logical_and — NumPy v1.16 Manual
Parameters: x1, x2 : array_like. Input arrays. x1 and x2 must be of the same shape. out : ndarray, None, or tuple of ndarray and None, optional. A location into ... https://docs.scipy.org numpy.ufunc.reduce — NumPy v1.13 Manual
the result of iterating j over range(N_i) , cumulatively applying ufunc to each a[k_0, ..,k_i-1}, j, . For a one-dimensional array, reduce produces results equivalent ... https://docs.scipy.org numpy.ufunc.reduce — NumPy v1.14 Manual - Numpy and Scipy ...
numpy.ufunc.reduce. Reduces a's dimension by one, by applying ufunc along one axis. For example, add.reduce() is equivalent to sum(). Axis or axes along which a reduction is performed. https://docs.scipy.org numpy.ufunc.reduce — NumPy v1.15 Manual
Then ufunc.reduce(a, axis=i)[k_0, ..,k_i-1}, k_i+1}, .., k_M-1}] = the result of iterating j over range(N_i), cumulatively applying ufunc to each a[k_0, ..,k_i-1}, j, ... https://docs.scipy.org numpy.ufunc.reduce — NumPy v1.16 Manual
numpy.ufunc.reduce. Reduces a's dimension by one, by applying ufunc along one axis. For example, add.reduce() is equivalent to sum(). Axis or axes along which a reduction is performed. https://docs.scipy.org The sample of numpy.logical_and.reduce and array indexing - Qiita
X = np.asarray([[1.0, 0.0, 3.0, 8.0], [2.0, 0.0, 1.0, 1.0], [1.5, 2.5, 1.0, 0.0]]) n = 4 M = np.logical_and.reduce(np.mod(X, 1) == 0, axis=-1) print(M) M ... https://qiita.com |