cofactor expansion中文

相關問題 & 資訊整理

cofactor expansion中文

3.2 Cofactor Expansion. DEF (→ p. 152) Let A = [aij] be an n × n matrix. • Mij denotes the (n − 1)×(n − 1) matrix of A obtained by deleting its i-th row and j-th. , 我們稱$latex -det-tildeA}_ij}&fg=000000$ 為餘子式(minor),並定義$latex a_ij}&fg=000000$ 的餘因子(cofactor) 為$latex -displaystyle…,定理3.1:餘因子展開(expansion by cofactors). ∑. = ++. +. = == n j in in i i ii ij ij. Ca. Ca. Ca. Ca. A. A a. 1. 2. 2. 11. ||) det(. )( L. (第i列展開) i=1, 2,…, n. 令A是n階 ... ,In linear algebra, the Laplace expansion, named after Pierre-Simon Laplace, also called cofactor expansion, is an expression for the determinant |B| of an n × n ... ,Determinants by Cofactor Expansion. 定義. 定理1.4.5中, 在ad-bc不為零時, 為可逆. 其中ad-bc為其行列式(determinant), 記做det(A) 或|A|. 子行列式和餘因子Minor ... ,這也就是對第一列所做的餘因子展開(cofactor expansion) 但,餘因子展開存在個問題,它需要n! 個乘法,以25x25 的矩陣為例,它會需要作1.5 x 1025 次的乘法,運算 ... , 此公式稱為Cofactor expansion along the first row of A(沿著A 的第一列餘因子展. 開式)。 Thus the determinant of A equals the sume of the ...,在線性代數中,餘因子是一種關於方陣之逆及其行列式的建構,餘因子矩陣的項是帶適當符號的子 ..... 外部連結[编辑]. MIT Linear Algebra Lecture on Cofactors at Google Video, from MIT OpenCourseWare; PlanetMath.

相關軟體 Brackets 資訊

Brackets
通過專注的可視化工具和預處理器支持,Brackets 是一款現代化的文本編輯器,可以很容易地在瀏覽器中進行設計。嘗試創意云抽取(預覽)為 Brackets 一個簡單的方法來獲得乾淨,最小的 CSS 直接從 PSD 沒有生成 code.Why 使用 Brackets?Brackets 是一個輕量級,但功能強大,現代的文本編輯器。將可視化工具混合到編輯器中,以便在需要時獲得適當的幫助。每 3 - 4 ... Brackets 軟體介紹

cofactor expansion中文 相關參考資料
3.2 Cofactor Expansion

3.2 Cofactor Expansion. DEF (→ p. 152) Let A = [aij] be an n × n matrix. • Mij denotes the (n − 1)×(n − 1) matrix of A obtained by deleting its i-th row and j-th.

http://www.math.odu.edu

伴隨矩陣| 線代啟示錄

我們稱$latex -det-tildeA}_ij}&fg=000000$ 為餘子式(minor),並定義$latex a_ij}&fg=000000$ 的餘因子(cofactor) 為$latex -displaystyle…

https://ccjou.wordpress.com

第三章行列式

定理3.1:餘因子展開(expansion by cofactors). ∑. = ++. +. = == n j in in i i ii ij ij. Ca. Ca. Ca. Ca. A. A a. 1. 2. 2. 11. ||) det(. )( L. (第i列展開) i=1, 2,…, n. 令A是n階 ...

http://eportfolio.lib.ksu.edu.

Laplace expansion - Wikipedia

In linear algebra, the Laplace expansion, named after Pierre-Simon Laplace, also called cofactor expansion, is an expression for the determinant |B| of an n × n ...

https://en.wikipedia.org

線性代數

Determinants by Cofactor Expansion. 定義. 定理1.4.5中, 在ad-bc不為零時, 為可逆. 其中ad-bc為其行列式(determinant), 記做det(A) 或|A|. 子行列式和餘因子Minor ...

https://web.ntnu.edu.tw

線性代數簡介@ 拾人牙慧:: 痞客邦::

這也就是對第一列所做的餘因子展開(cofactor expansion) 但,餘因子展開存在個問題,它需要n! 個乘法,以25x25 的矩陣為例,它會需要作1.5 x 1025 次的乘法,運算 ...

http://silverwind1982.pixnet.n

CHAPTER 04 Determinants

此公式稱為Cofactor expansion along the first row of A(沿著A 的第一列餘因子展. 開式)。 Thus the determinant of A equals the sume of the ...

http://www.taiwan921.lib.ntu.e

餘因子矩陣- 维基百科,自由的百科全书

在線性代數中,餘因子是一種關於方陣之逆及其行列式的建構,餘因子矩陣的項是帶適當符號的子 ..... 外部連結[编辑]. MIT Linear Algebra Lecture on Cofactors at Google Video, from MIT OpenCourseWare; PlanetMath.

https://zh.wikipedia.org