IObit Malware Fighter Free

最新版本 NumPy 1.16.0

NumPy 1.16.0

NumPy 1.16.0
從 IObit 免費的惡意軟件鬥士是一種先進的惡意軟件& 間諜軟件清除實用程序,檢測並消除最深的感染和用戶’ 最關心的在線威脅,並實時保護您的電腦免受惡意行為。借助 IObit 獨有的“雙核”反惡意軟件引擎,能夠快速,高效地檢測到最複雜,最深刻的惡意軟件,如間諜軟件,廣告軟件,木馬,鍵盤記錄器,機器人,蠕蟲和劫機者。借助增強的瀏覽器保護模塊,IObit 惡意軟件鬥士將確保您完整的在線衝浪&隱私保護,阻止惡意彈出窗口,減少主頁劫持和刪除惡意工具欄 / 插件。 IObit Malware Fighter Free 免費下載 Windows PC 的最新版本。它是 IObit Malware Fighter 的完全離線安裝程序安裝程序.



Malware Fighter 功能:

Enhanced Dual Anti-Malware& 防病毒保護
眾所周知,惡意惡意軟件會劫持您的計算機,竊取您的個人數據,並使您的 PC 變得更慢,更不穩定。現在,為了保護您的網上沖浪,IObit Malware Fighter 4 新增了世界領先的 Bitdefender 反病毒引擎,增強的 IObit 反惡意軟件引擎,並將數據庫擴展了 10 倍。這種雙重保護可以深入掃描和刪除間諜軟件,勒索軟件,廣告軟件,木馬,鍵盤記錄器,機器人,蠕蟲和劫機者等 1 億多隱藏的威脅,以保持您的電腦免受攻擊.

反跟踪瀏覽器保護
惡意網站和插件可以很容易地更改您的網頁瀏覽器的主頁和默認搜索提供商到另一個未經您的許可。 IObit Malware Fighter 4 中增強的反跟踪瀏覽器保護功能,可以有效防止主要瀏覽器(包括 Chrome,IE,Firefox 和 Edge)上的網頁劫持和默認搜索引擎修改,確保您擁有更好,更安全的在線體驗.

實時與放大; 主動隱私保護
互聯網是一個安全的雷區,在這個雷區很容易陷入困境。 IObit Malware Fighter 4 改進了安全防護功能,實現更好的實時隱私保護,主動攔截更多惡意軟件,病毒甚至勒索軟件。增強的保護會自動清除惡意跟踪數據,以更好地保護您的隱私和各種帳戶的密碼,沒有任何威脅的空間。下載 IObit Malware Fighter Offline Installer 安裝程序.

快速,輕鬆,易於使用
IObit 惡意軟件鬥士 4 完全兼容所有主流的防病毒產品,並可以幫助您的防病毒產品,以確保您的電腦在其最高的安全性。您會覺得使用全新的 UI 設計更易於使用和閱讀。此外,借助緩存掃描機制,IObit Malware Fighter 4 將在威脅掃描和移除過程中最大限度地減少資源使用,從而大大提高掃描速度,從而獲得更平滑的 PC 體驗。

注意:未註冊版本中的功能有限.

ScreenShot

軟體資訊
檔案版本 NumPy 1.16.0

檔案名稱 numpy-1.16.0.zip
檔案大小 4.82 MB
系統 Windows XP / Vista / Windows 7 / Windows 8 / Windows 10 / XP64 / Vista64 / Windows 7 64 / Windows 8 64 / Windows 10 64
軟體類型 免費軟體
作者 IObit Lab
官網 http://www.iobit.com/en/malware-fighter.php
更新日期 2019-01-14
更新日誌

What's new in this version:

Highlights:
- Experimental support for overriding numpy functions, see __array_function__ below.
- The matmul function is now a ufunc. This provides better performance and allows overriding with __array_ufunc__.
- Improved support for the ARM and POWER architectures.
- Improved support for AIX and PyPy.
- Improved interop with ctypes.
- Improved support for PEP 3118.

New functions:
- New functions added to the numpy.lib.recfuntions module to ease the structured assignment changes: assign_fields_by_name, structured_to_unstructured, unstructured_to_structured, apply_along_fields, require_fields

New deprecations:
- The type dictionaries numpy.core.typeNA and numpy.core.sctypeNA are deprecated. They were buggy and not documented and will be removed in the 1.18 release. Usenumpy.sctypeDict instead.
- The numpy.asscalar function is deprecated. It is an alias to the more powerful numpy.ndarray.item, not tested, and fails for scalars.
- The numpy.set_array_ops and numpy.get_array_ops functions are deprecated.
- As part of NEP 15, they have been deprecated along with the C-API functions :c:func:PyArray_SetNumericOps and :c:func:PyArray_GetNumericOps. Users who wish to override the inner loop functions in built-in ufuncs should use :c:func:PyUFunc_ReplaceLoopBySignature.
- The numpy.unravel_index keyword argument dims is deprecated, use shape instead.
- The numpy.histogram normed argument is deprecated. It was deprecated previously, but no warning was issued.
- The positive operator (+) applied to non-numerical arrays is deprecated. See below for details.
- Passing an iterator to the stack functions is deprecated

Expired deprecations:
- NaT comparisons now return False without a warning, finishing a deprecation cycle begun in NumPy 1.11.
- np.lib.function_base.unique was removed, finishing a deprecation cycle begun in NumPy 1.4. Use numpy.unique instead.
- multi-field indexing now returns views instead of copies, finishing a deprecation cycle begun in NumPy 1.7. The change was previously attempted in NumPy 1.14 but reverted until now.
- np.PackageLoader and np.pkgload have been removed. These were deprecated in 1.10, had no tests, and seem to no longer work in 1.15.

Future changes:
NumPy 1.17 will drop support for Python 2.7

NumPy 1.16.0 相關參考資料
NumPy Reference - Numpy and Scipy Documentation

NumPy Reference, Release 1.16.0 itemsize [int] Length of one array element in bytes. nbytes [int] Total bytes consumed by the elements of the ...

https://docs.scipy.org

NumPy User Guide - Numpy and Scipy Documentation - SciPy.org

NumPy User Guide, Release 1.16.0. This guide is intended as an introductory overview of NumPy and explains how to install and make use of ...

https://docs.scipy.org

numpy · PyPI

NumPy is the fundamental package for array computing with Python.

https://pypi.org

numpy1.16.0-notes.rst at master · numpynumpy · GitHub

NumPy 1.16.0 Release Notes. This NumPy release is the last one to support Python 2.7 and will be maintained as a long term release with bug fixes until 2020.

https://github.com

numpynumpy - GitHub

I've got numpy version updated automatically from PyPI to 1.16.0 version today and my tests have failed with the following error on numpy ...

https://github.com

Overview — NumPy v1.16 Manual - Numpy and Scipy Documentation

NumPy v1.16 Manual. Welcome! This is the documentation for NumPy 1.16.0, last updated Jan 31, 2019. Parts of the documentation: ...

https://docs.scipy.org

Release Notes — NumPy v1.16 Manual

NumPy 1.16.0 Release Notes¶. This NumPy release is the last one to support Python 2.7 and will be maintained as a long term release with ...

https://docs.scipy.org

Release Notes — NumPy v1.17 Manual

The NumPy 1.16.1 release fixes bugs reported against the 1.16.0 release, and also backports several enhancements from master that seem appropriate for a ...

https://docs.scipy.org

Releases · numpynumpy · GitHub

Commonly numpy.broadcast_arrays returns a writeable array with internal ...... The NumPy 1.16.1 release fixes bugs reported against the 1.16.0 release, and

https://github.com