Firefox (64-bit)

最新版本 NumPy 1.16.0

NumPy 1.16.0

NumPy 1.16.0
Mozilla Firefox 64 位是一個快速,功能全面的免費網頁瀏覽器。 Firefox 包括彈出式窗口攔截,標籤瀏覽,集成的 Google,雅虎和必應搜索,簡化的隱私控制,簡化的瀏覽器窗口,向您顯示比其他任何瀏覽器更多的頁面,以及一些與您一起工作的附加功能你在網上獲得最多的時間。您可以通過點擊免費下載按鈕,從我們的網站下載 Firefox 的 PC 脫機安裝程序.

查看新的 Firefox,這是 Firefox Quantum 的幾個版本中的第一個,讓您能夠比以往更快地獲得所需的東西和所需的東西,隨著一個全新的外觀.



Firefox 量子特點:

2x Faster
瘋狂的強大的瀏覽器引擎?檢查。等待頁面加載的時間更少?另外,檢查。獲取最好的火狐瀏覽器.

30%比 Chrome
輕內存使用意味著更多的空間讓您的電腦保持平穩運行。您的其他程序將感謝您.

光滑瀏覽
無論您打開 10 或 1000,使用 Firefox 新的響應式引擎,標籤之間的切換速度比以往更快.

私人瀏覽
Firefox 在您瀏覽時屏蔽在線追踪器,並且在您“記住”之後不會記住您的歷史記錄; 重做.

跟踪保護
有些廣告隱藏跟踪器,跟踪你在線。無禮。我們知道。這就是為什麼我們強大的工具能夠阻止他們受到冷落.

Faster Page Loading
通過阻止一些阻礙瀏覽的廣告和腳本,網頁加載速度提高了 44%。現在,這是一個雙贏.

Screenshots
簡單的截圖。直接從 Firefox 分享。這意味著不再需要在計算機上搜索神秘的文件名.

Pocket
在工具欄中建立起來,它是最終的“稍後保存”功能。通過任何設備查看您的文章,視頻和網頁.

遊戲& VR
為下一代遊戲設計,Firefox 內置了對 WASM 和 WebVR 的支持。無需額外安裝!

Library
節省時間!查找所有您喜愛的內容,如口袋保存,書籤,瀏覽歷史記錄,截圖和下載在一個點.

Extensions
自定義火狐數以千計的擴展,如 LastPass,uBlock 起源,Evernote 和更多.

Themes
通過 Firefox 來適應你的心情!從我們的主題類別中選擇一個新的外觀或創建自己的.

Toolbar
設置 Firefox 的方式。將功能拖入和拖出工具欄以方便訪問.

同步您的設備
無縫訪問密碼,書籤和更多。此外,使用我們的“發送標籤”功能,可以在桌面,移動設備和平板電腦之間即時共享打開的標籤.

注意:通過 Firefox ESR(Extenderd 支持版本),對 Windows XP 和 Windows Vista 的 Firefox 支持仍然可用。下載適用於 Windows XP 或 Vista 的 Firefox.

也提供:下載適用於 Mac

的 Firefox

ScreenShot

軟體資訊
檔案版本 NumPy 1.16.0

檔案名稱 numpy-1.16.0.zip
檔案大小 4.82 MB
系統 Windows 7 64 / Windows 8 64 / Windows 10 64
軟體類型 開源軟體
作者 Mozilla Organization
官網 https://www.mozilla.org/en-US/firefox/new/
更新日期 2019-01-14
更新日誌

What's new in this version:

Highlights:
- Experimental support for overriding numpy functions, see __array_function__ below.
- The matmul function is now a ufunc. This provides better performance and allows overriding with __array_ufunc__.
- Improved support for the ARM and POWER architectures.
- Improved support for AIX and PyPy.
- Improved interop with ctypes.
- Improved support for PEP 3118.

New functions:
- New functions added to the numpy.lib.recfuntions module to ease the structured assignment changes: assign_fields_by_name, structured_to_unstructured, unstructured_to_structured, apply_along_fields, require_fields

New deprecations:
- The type dictionaries numpy.core.typeNA and numpy.core.sctypeNA are deprecated. They were buggy and not documented and will be removed in the 1.18 release. Usenumpy.sctypeDict instead.
- The numpy.asscalar function is deprecated. It is an alias to the more powerful numpy.ndarray.item, not tested, and fails for scalars.
- The numpy.set_array_ops and numpy.get_array_ops functions are deprecated.
- As part of NEP 15, they have been deprecated along with the C-API functions :c:func:PyArray_SetNumericOps and :c:func:PyArray_GetNumericOps. Users who wish to override the inner loop functions in built-in ufuncs should use :c:func:PyUFunc_ReplaceLoopBySignature.
- The numpy.unravel_index keyword argument dims is deprecated, use shape instead.
- The numpy.histogram normed argument is deprecated. It was deprecated previously, but no warning was issued.
- The positive operator (+) applied to non-numerical arrays is deprecated. See below for details.
- Passing an iterator to the stack functions is deprecated

Expired deprecations:
- NaT comparisons now return False without a warning, finishing a deprecation cycle begun in NumPy 1.11.
- np.lib.function_base.unique was removed, finishing a deprecation cycle begun in NumPy 1.4. Use numpy.unique instead.
- multi-field indexing now returns views instead of copies, finishing a deprecation cycle begun in NumPy 1.7. The change was previously attempted in NumPy 1.14 but reverted until now.
- np.PackageLoader and np.pkgload have been removed. These were deprecated in 1.10, had no tests, and seem to no longer work in 1.15.

Future changes:
NumPy 1.17 will drop support for Python 2.7

NumPy 1.16.0 相關參考資料
NumPy Reference - Numpy and Scipy Documentation

NumPy Reference, Release 1.16.0 itemsize [int] Length of one array element in bytes. nbytes [int] Total bytes consumed by the elements of the ...

https://docs.scipy.org

NumPy User Guide - Numpy and Scipy Documentation - SciPy.org

NumPy User Guide, Release 1.16.0. This guide is intended as an introductory overview of NumPy and explains how to install and make use of ...

https://docs.scipy.org

numpy · PyPI

NumPy is the fundamental package for array computing with Python.

https://pypi.org

numpy1.16.0-notes.rst at master · numpynumpy · GitHub

NumPy 1.16.0 Release Notes. This NumPy release is the last one to support Python 2.7 and will be maintained as a long term release with bug fixes until 2020.

https://github.com

numpynumpy - GitHub

I've got numpy version updated automatically from PyPI to 1.16.0 version today and my tests have failed with the following error on numpy ...

https://github.com

Overview — NumPy v1.16 Manual - Numpy and Scipy Documentation

NumPy v1.16 Manual. Welcome! This is the documentation for NumPy 1.16.0, last updated Jan 31, 2019. Parts of the documentation: ...

https://docs.scipy.org

Release Notes — NumPy v1.16 Manual

NumPy 1.16.0 Release Notes¶. This NumPy release is the last one to support Python 2.7 and will be maintained as a long term release with ...

https://docs.scipy.org

Release Notes — NumPy v1.17 Manual

The NumPy 1.16.1 release fixes bugs reported against the 1.16.0 release, and also backports several enhancements from master that seem appropriate for a ...

https://docs.scipy.org

Releases · numpynumpy · GitHub

Commonly numpy.broadcast_arrays returns a writeable array with internal ...... The NumPy 1.16.1 release fixes bugs reported against the 1.16.0 release, and

https://github.com