EmEditor Professional (64-bit)

最新版本 NumPy 1.16.0

NumPy 1.16.0

NumPy 1.16.0
EmEditor Professional 64 位是一個快速,輕量級,但可擴展,易於使用的 Windows 文本編輯器。原生的 64 位和 32 位構建都可用! EmEditor Professional 支持強大的宏,Unicode 和非常大的文件。 Emurasoft 的永恆使命是實現我們的客戶 ' 通過同情和專業知識傾聽他們的需求。我們非常重視及時的客戶支持,並且很榮幸能夠擁有包括大型企業,教育機構,歐盟機構,日本國家部委和世界各國政府在內的傑出用戶。下載 EmEditor 專業版離線安裝程序設置! EmEditor 已經贏得了 24 個國際獎項,其中包括最佳應用類別中的共享軟件行業獎。用於 Windows 的 EmEditor 文本編輯器也獲得了 Microsoft 的 Windows 10 認證.

這部分提供了關於如何使用 EmEditor 的提示,並解釋了為什麼您需要最好的文本編輯器:

Annnnnnnnnnnnnnnnnn 設計者可以使用 Snippets 插件經常使用的 HTML 標籤(例如 h1,h2,p,a 等),模板,樣式,腳本和許多其他 HTML 元素。使用 Snippets 插件,您可以使用鍵盤快捷鍵(如 CTRL + B)使選定的文本突出顯示(使用 STRONG 標記),CTRL + I 作為斜體顯示(使用 EM 標記)等。Zen 編碼允許您代碼 HTML 元素令人難以置信的更快。 HTML Bar 插件允許您使用熟悉的工具欄按鈕修改 HTML 文檔。顯示 HTML / XML 字符引用功能的工具提示是有用的...

A Programmer
The Projects 插件顯示當前文檔或項目中的函數和變量定義的列表。自動標記功能可以讓您突出顯示與光標處的函數或變量名稱相同的字符串。 “縮小”功能可讓您將焦點對准文檔的指定部分,並保護文檔的其他部分。多選編輯功能可以讓您輕鬆更改變量名稱。外部工具允許您使用 EmEditor 設置您的編譯器。拼寫檢查功能了解 CamelCase ...

An 編輯器或發行者
EmEditor 允許你寫文本非常快。  EmEditor 可以快速啟動,只要您打開 EmEditor 窗口,就可以開始輸入。片段插件允許您插入經常使用的文本。 Word Complete 插件可幫助您在輸入時完成單詞。 “大綱”功能允許您顯示文本的大綱。 Word Count 插件不僅可以計算單詞,還可以計算任何指定的字符或單詞... 下載 EmEditor Professional 離線安裝程序設置!

A 數據庫管理員
EmEditor 允許您快速打開超大文件,而大文件控制器允許您僅打開大文件的指定部分。 EmEditor 允許您打開 CSV,TSV 或用戶定義的分隔符(DSV)文件。您可以根據列值進行排序(按字母或數字),並且可以配置排序選項,如穩定排序。 EmEditor 允許您分割或合併文件...

A Server Administrator
Server 日誌文件往往非常大。  EmEditor 可以打開非常大的文件,並且大文件控制器允許您僅打開指定部分,例如文件的最後部分。靈活的搜索功能允許您搜索特定的術語。您還可以使用書籤功能,以便您可以收集符合特定條件的行,例如包含錯誤關鍵字或網址的行。然後,你可以提取這些行到一個新的文件...

如果你需要一個自由文本編輯器
如果你需要一個最好的免費文本編輯器,EmEditor 免費可能適合你。雖然與 EmEditor Professional 不在同一級別,但 EmEditor Free 允許您在不購買產品的情況下執行大部分文本編輯任務。請看比較圖表是否適合您。一旦您將產品降級到 EmEditor Free,您將永遠不會被要求升級或獲取任何營銷信息,因此請繼續保持免費版本,只要您願意!

注意:30 天試用版.

ScreenShot

軟體資訊
檔案版本 NumPy 1.16.0

檔案名稱 numpy-1.16.0.zip
檔案大小 4.82 MB
系統 Windows XP64 / Vista64 / Windows 7 64 / Windows 8 64 / Windows 10 64
軟體類型 未分類
作者 Emurasoft, Inc.
官網 https://www.emeditor.com/
更新日期 2019-01-14
更新日誌

What's new in this version:

Highlights:
- Experimental support for overriding numpy functions, see __array_function__ below.
- The matmul function is now a ufunc. This provides better performance and allows overriding with __array_ufunc__.
- Improved support for the ARM and POWER architectures.
- Improved support for AIX and PyPy.
- Improved interop with ctypes.
- Improved support for PEP 3118.

New functions:
- New functions added to the numpy.lib.recfuntions module to ease the structured assignment changes: assign_fields_by_name, structured_to_unstructured, unstructured_to_structured, apply_along_fields, require_fields

New deprecations:
- The type dictionaries numpy.core.typeNA and numpy.core.sctypeNA are deprecated. They were buggy and not documented and will be removed in the 1.18 release. Usenumpy.sctypeDict instead.
- The numpy.asscalar function is deprecated. It is an alias to the more powerful numpy.ndarray.item, not tested, and fails for scalars.
- The numpy.set_array_ops and numpy.get_array_ops functions are deprecated.
- As part of NEP 15, they have been deprecated along with the C-API functions :c:func:PyArray_SetNumericOps and :c:func:PyArray_GetNumericOps. Users who wish to override the inner loop functions in built-in ufuncs should use :c:func:PyUFunc_ReplaceLoopBySignature.
- The numpy.unravel_index keyword argument dims is deprecated, use shape instead.
- The numpy.histogram normed argument is deprecated. It was deprecated previously, but no warning was issued.
- The positive operator (+) applied to non-numerical arrays is deprecated. See below for details.
- Passing an iterator to the stack functions is deprecated

Expired deprecations:
- NaT comparisons now return False without a warning, finishing a deprecation cycle begun in NumPy 1.11.
- np.lib.function_base.unique was removed, finishing a deprecation cycle begun in NumPy 1.4. Use numpy.unique instead.
- multi-field indexing now returns views instead of copies, finishing a deprecation cycle begun in NumPy 1.7. The change was previously attempted in NumPy 1.14 but reverted until now.
- np.PackageLoader and np.pkgload have been removed. These were deprecated in 1.10, had no tests, and seem to no longer work in 1.15.

Future changes:
NumPy 1.17 will drop support for Python 2.7

NumPy 1.16.0 相關參考資料
NumPy Reference - Numpy and Scipy Documentation

NumPy Reference, Release 1.16.0 itemsize [int] Length of one array element in bytes. nbytes [int] Total bytes consumed by the elements of the ...

https://docs.scipy.org

NumPy User Guide - Numpy and Scipy Documentation - SciPy.org

NumPy User Guide, Release 1.16.0. This guide is intended as an introductory overview of NumPy and explains how to install and make use of ...

https://docs.scipy.org

numpy · PyPI

NumPy is the fundamental package for array computing with Python.

https://pypi.org

numpy1.16.0-notes.rst at master · numpynumpy · GitHub

NumPy 1.16.0 Release Notes. This NumPy release is the last one to support Python 2.7 and will be maintained as a long term release with bug fixes until 2020.

https://github.com

numpynumpy - GitHub

I've got numpy version updated automatically from PyPI to 1.16.0 version today and my tests have failed with the following error on numpy ...

https://github.com

Overview — NumPy v1.16 Manual - Numpy and Scipy Documentation

NumPy v1.16 Manual. Welcome! This is the documentation for NumPy 1.16.0, last updated Jan 31, 2019. Parts of the documentation: ...

https://docs.scipy.org

Release Notes — NumPy v1.16 Manual

NumPy 1.16.0 Release Notes¶. This NumPy release is the last one to support Python 2.7 and will be maintained as a long term release with ...

https://docs.scipy.org

Release Notes — NumPy v1.17 Manual

The NumPy 1.16.1 release fixes bugs reported against the 1.16.0 release, and also backports several enhancements from master that seem appropriate for a ...

https://docs.scipy.org

Releases · numpynumpy · GitHub

Commonly numpy.broadcast_arrays returns a writeable array with internal ...... The NumPy 1.16.1 release fixes bugs reported against the 1.16.0 release, and

https://github.com